東京工業大学地球生命研究所の廣瀬敬(所長・教授)らは、液体の地球コアに元々大量に溶け込んでいたケイ素と酸素が、その後の冷却に伴って二酸化ケイ素として結晶化し続け、それがコアの対流を引き起こすことにより、地球には誕生間もない頃から磁場が存在していた可能性が高いことを突き止めた。この磁場の存在が大気の散逸を防ぎ、今日に至るまで地球には豊かな海が維持されてきたと考えられる。

これまでの研究から、地球の形成時において、重たい液体の金属鉄が地球中心部へと沈んで行く間に周囲のマグマと化学反応を起こし、マグマの主成分であるケイ素と酸素が金属中に取り込まれ、コアへと運ばれたと考えられている。そこで、同研究グループが地球コアに相当する超高圧高温環境を実験室で実現し、ケイ素と酸素を含む液体鉄をその環境下に置いたところ、二酸化ケイ素(地表では石英)の結晶化が観察された。コア最上部の液体鉄から密度の小さな二酸化ケイ素が結晶化して分離することにより、残りの液体の密度が大きくなり地球中心へと沈んで行く。これによりコアの中で金属の対流運動が発生し、電磁誘導作用によって磁場を形成する。このようなメカニズムにより、地球はその長い歴史を通して磁場を維持し続けてきたことが明らかになった。一方、地球は磁場があるために太陽風による大気の散逸を免れ、その結果、海の蒸発も免れた可能性がある。本研究により、惑星の大気や海の保持には、その誕生時に「金属コアがどのように形成されたか」が1つの鍵であることが示唆される。

これらの成果は、英科学誌「ネイチャー」に掲載される(3月2日発行の印刷版に先行し、オンライン版2月22日付(日本時間23日午前3時解禁))。

背景

地球には強い磁場があり、それゆえに地球表層への強い紫外線の照射が防がれている。このことが生命の陸上への進出を可能にし、またその後の進化にも影響しているだろう。同時に、磁場は太陽風による地球大気の散逸を防いでいると考える研究者が多い。もし磁場がなければ、大気中の水蒸気が失われ、その結果、海の蒸発が進むことになる。火星の大気がとても薄く、また初期にあったとされる海が消滅したのは、火星の重力が小さいことに加え、磁場がない(初期に失われた)ことと密接に関連しているに違いない。

地球の磁場は、自由電子を持つ金属の液体がコア中を対流運動する(つまり電気が流れる)ことによって形成されている。問題は、コアの対流を駆動するメカニズムである。現在は組成対流と呼ばれるメカニズムが重要と考えられている。地球の中心に固体のコア(内核)が少しずつ結晶化し、あとに残る液体金属が軽元素にわずかに富む(つまり軽い)ことにより、浮き上がって対流する、というものである(図1)。しかしながら、内核が誕生したのはおよそ7億年前(地球の歴史は45億年)なので、それ以前は別のメカニズムが必要である。これまでは、冷たいプレートが沈み込むことによって、コアの表面を冷やし、冷えて重たくなった液体金属が沈む、という熱対流が重要と考えられて来た。ところが、最近の研究によれば(2016.06.02 東工大プレス発表参照)、コアの金属の熱伝導率が高いため、熱対流を起こすためにはコアを急速に冷やす(熱伝導で運べる以上の熱を奪う)必要がある。地球初期から7億年前まで、ずっと熱対流が続いていたとすると、昔のコアは6,000度を超える高温であった必要がある。コアがそのように高温であったとすると、マントルも現在より数千度も高温であった必要があり、それは地質学的な観察に合わない。そこで、熱対流に変わる別のメカニズムが必要と考えられていた(新しいコアのパラドックス)。

20170223 KHirose

図1. 地球コアにおける結晶化と対流運動

地球初期の時代から、ケイ素と酸素に富む液体鉄は、コア最上部(マントルとの境界部)において二酸化ケイ素を結晶化し、残った液体が重くなって下降することにより、コアの対流を駆動していた。より最近は(およそ7億年前から)、内核(固体金属鉄)の結晶化も、外核の対流に寄与している。コアとマントルの境界部に結晶化した二酸化ケイ素は、周囲と密度が等しくなる、下部マントル中位(深さ1,500 km付近)へと上昇し、地震波の散乱体を形成している可能性がある。

そこで考えられるのは、内核(固体金属)に先行して、何らかの結晶化が起こることによる組成対流である。コアは純粋な鉄ではなく、5%程度のニッケルに加え、それ以外の軽い元素がかなり多量に含まれている(鉄の密度を10%も下げている)ことが知られている。地球誕生時にコアが形成される際、液体の鉄が地球中心部へと集積していく通り道で、マントル(当時はマグマ)と高温高圧下で化学反応し、ケイ素と酸素が金属鉄中に取り込まれる。ゆえに、多くの研究者によって、コアの軽元素はケイ素と酸素であると考えられていた。ところが、そのようなケイ素と酸素を含む液体鉄が、地球の冷却に伴ってコア中で何を結晶化させるかということはこれまで調べられていなかった。

成果

本研究グループは、これまでレーザー加熱式ダイアモンドアンビルセル(図2)を用いた超高圧・高温実験技術の開発を精力的に進めてきた。この技術を利用して、マントル最下部の主要鉱物ポストペロフスカイト相の発見、地球内核における鉄の結晶構造の決定など、高圧地球科学の分野で大きな成果を挙げてきた。

20170223 KHirose2

図2. 超高圧発生用ダイアモンドアンビル装置

マントル物質を二つのダイアの間に挟み、超高圧下でレーザーを照射することにより超高温を発生させる。

そして今回さらにこの技術によって、ケイ素と酸素を含む液体鉄を、地球コアに相当する133 - 145万気圧と3,860 - 3,990ケルビンの超高圧高温環境下に置いたところ、二酸化ケイ素(圧力や温度によって様々な結晶構造を取るが、地表では石英)の結晶化が観察された(図3)。また一連の実験から、二酸化ケイ素の結晶化は液体金属中からケイ素と酸素を取り除き、その後固体金属の結晶化が起こることがわかった。すなわち、7億年前に始まった内核(固体金属)の結晶化に先行して、おそらく地球初期の時代から、コアからは酸化物(二酸化ケイ素)が晶出していたことが明らかになった。

20170223 KHirose3

図3. 133万気圧における液体Fe-Si-O合金の結晶化実験

高圧高温実験終了後に取得した、電子顕微鏡による試料断面の元素マッピング像。液体(Liq)と融解しなかった部分(subsolidus)の間に、二酸化ケイ素(SiO2)の晶出が観察される。

コア最上部において、密度の小さい二酸化ケイ素が結晶化すると、残った液体金属の密度は大きくなる。ゆえに、それらは地球中心へと沈んで行く。上に述べたように、このような組成対流は電磁誘導作用によって地球磁場を形成する。つまり、コアがその最上部で軽い二酸化ケイ素を少しずつ結晶化し続け、また最近では中心部で重たい固体鉄をも結晶化することにより、コア中には常に組成対流が存在し、地球の長い歴史を通して磁場が維持され続けてきたはずである。また、これにより地球は、大気の散逸、さらには海の蒸発を免れた可能性がある。つまり、惑星の磁場の有無、さらには大気や海の保持、そして生命の誕生と持続には、惑星の形成時に金属コアがどのように形成されたか(マントルとの化学反応によって十分なケイ素と酸素を取り込んだか否か)、が1つの鍵であると示唆される。

今後の展望

コアの形成プロセスを考えた場合、ケイ素と酸素がコアの最も有力な軽元素、とこれまで考えられてきた。ところが今回の成果は、内核(固体金属)を結晶化させている現在の外核(液体コア)では、そのどちらか一方はすでに枯渇していることを示している。近年、これらケイ素と酸素に加えて、水素が注目されている(2014.01.22 東工大プレス発表参照)。水素は地球に水として運ばれてきたと考えられるため、コアに大量の水素があるならば、地球に海水量をはるかに超える水が持ち込まれたことになる。しかし、標準的なコア形成モデルでは、コア中に多くのケイ素と酸素が取り込まれるため、さらに水素を含めるとコアの密度が軽くなりすぎてしまうという批判があった。しかし、今回の実験で、そのようなケイ素と酸素は二酸化ケイ素として取り去られることが明らかになり、コアの水素説を強くサポートする結果となった。今後さらに、水素を含む固体鉄の地震波速度の研究を進め、説明困難とされる内核の横波速度を鍵として、地球コアの化学組成の解明を進める必要がある。これにより、水が持ち込まれたタイミングなど、地球形成のシナリオの詳細が明らかになるはずである。

さらに、地球深部で結晶化した二酸化ケイ素は、未だに実態が明らかにされていない地震波速度異常の原因になっている可能性がある。二酸化ケイ素は代表的なマントル鉱物ではない(大陸地殻の主要鉱物)ため、マントル中に存在すると地震波速度異常として現れやすい。また、二酸化ケイ素はマントル深部にあってはとても軽い鉱物であるが、深さ約1,500 kmにてマントルと密度が釣り合う。よって、コアとマントルの境界で結晶化した後、下部マントル中位へと上昇し、現在観測される地震波の散乱体となっている可能性がある(Dipping Low-Velocity Layer in the Mid-Lower Mantle: Evidence for Geochemical Heterogeneity)。今後、これら散乱体の分布を手掛かりに、マントルの対流運動の解明が進むと期待される。

 

論文情報

掲載誌 :
Nature
論文タイトル :
Crystallization of silicon dioxide and compositional evolution of the Earth's core
著者 :
Kei Hirose1, Guillaume Morard2, Ryosuke Sinmyo1, Koichio Umemoto1, John Hernlund1, George Helffrich1& Stéphane Labrosse3
所属 :
Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan.

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Universités--Université Pierre et Marie Curie, CNRS, Muséum National d'Histoire Naturelle, IRD, 4 Place Jussieu, 75005 Paris, France.

Université de Lyon, École normale supérieure de Lyon, Université Lyon-1, CNRS, UMR 5276 LGL-TPE, F-69364 Lyon, France.
DOI :

 

関連リンク

プレスリリース:「地球コアで"石英"が晶出〜できたての頃から地球には磁場が存在、コア組成も大きく変化〜」

地球生命研究所(ELSI) 研究者情報 | 廣瀬 敬

顔 東工大の研究者たち Vol.2 廣瀬敬

地球の内核は7億歳?地球冷却の歴史の一端が明らかに―地球中心核条件下での鉄の電気伝導度測定に成功―(2016.6.2)

地球の液体外核の炭素量に制約―超高圧高温下で液体鉄炭素合金の音波速度を測定―(2015.12.01)

氷の体積同位体効果の本質を解明―統一的な理論構築と実験による実証に成功―(2015.11.19)

地球生命研究所


【東京工業大学 地球生命研究所について】

地球生命研究所(ELSI)は、文部科学省が平成24年に公募を実施した世界トップレベル研究拠点プログラム(WPI ※)に採択され、 同年12月7日に産声をあげた新しい研究所。 
「地球がどのように出来たのか、生命はいつどこで生まれ、どのように進化して来たのか」という、人類の根源的な謎の解明に挑んでいる。 
※世界トップレベル研究拠点プログラム(WPI)は、平成19年度から文部科学省の事業として開始されたもので、 システム改革の導入等の自主的な取組を促す支援により、第一線の研究者が是非そこで研究したいと世界から多数集まってくるような、 優れた研究環境ときわめて高い研究水準を誇る「目に見える研究拠点」の形成を目指している。

 

お問い合わせ

 

【研究に関する問い合わせ先】

東京工業大学 地球生命研究所 所長/教授
廣瀬 敬
Email: director_[at]_elsi.jp

【取材申し込み先】

東京工業大学 地球生命研究所 広報室
E-mail: pr_[at]_elsi.jp
TEL: 03-5734-3163
FAX: 03-5734-3416

東京工業大学 広報センター
E-mail: media_[at]_jim.titech.ac.jp
TEL: 03-5734-2975
FAX: 03-5734-3661